Fall 2018 MATH3060 Mathematical Analysis III Selected Solutions to Mid-Term Examination

Part A (50 marks) Each question carries 10 marks.

- 1. Find the Fourier series of the function $f(x) = \sin x$, $x \in [0, \pi]$, and f(x) = 0, $x \in [-\pi, 0)$. Does the Fourier series of f converge to f uniformly?
- 2. Let g be a 2π -periodic function satisfying the Lipschitz condition, that is, for some constant L, $|g(x) g(y)| \le L|x y|$ for all x, y. Show that its Fourier coefficients satisfies

$$|c_n| \le \frac{C}{n}$$
, $n \in \mathbb{Z}$,

for some constant C. Express C in terms of L.

3. Let $S_n \varphi(x)$ be the *n*-th partial sum of the Fourier series of the function φ defined by

$$\varphi(x) = \frac{\sin 2x}{x}, \quad x \in (0,\pi] ,$$

and $\varphi(x) = -6$, $x \in [-\pi, 0)$. Find $\lim_{n \to \infty} S_n \varphi(0)$. You should justify your answer.

4. Consider (\mathbb{R}, d) where d is the discrete metric d. Show that every real-valued function in X is continuous with respect to d. Can you find a metric d' on \mathbb{R} such that the only continuous real-valued functions on (\mathbb{R}, d') are the constant ones?

Solution 1. Let $x_n \to x$. We claim $f(x_n) \to f(x)$. As $x_n \to x$, for $\varepsilon > 0$, there is some n_0 such that $d(x_n, x) < \varepsilon$ for all $n \ge n_0$. But when $\varepsilon = 1/2$, $d(x_n, x) < 1/2$ means $x_n = x$ for all n_0 (the only corresponding to 1/2). Therefore, $f(x_n) = f(x)$ for all $n \ge n_0$, so trivially $f(x_n) \to f(x)$. We conclude that f is continuous. **Solution 2.** Use the fact $B_{1/2}(x) \subset \{x\}$ which implies that $\{x\}$ is an open set. Since the union of any open sets is still an open set, every subset of X is open. Now, a function is continuous if and only if $f^{-1}(G)$ for any open set G in \mathbb{R} . As $f^{-1}(G)$ is a subset of X and hence it must be open, f is continuous.

5. State Minkowski's Inequality for functions in C[a, b] and then deduce it from Hölder's Inequality:

$$\int_{a}^{b} |fg| \le \left(\int_{a}^{b} |f|^{p}\right)^{1/p} \left(\int_{a}^{b} |g|^{q}\right)^{1/q} , \quad \frac{1}{p} + \frac{1}{q} = 1, \ p > 1 .$$

Part B (50 marks)

- (6) Consider the norms $\|\cdot\|_1$ and $\|\cdot\|_p$, 1 , on <math>C[a, b] and denote their respective induced metrics by d_1 and d_p .
 - (a) (10 marks) Show that d_1 is weaker than d_p .
 - (a) (10 marks) Show that d_1 is strictly weaker than d_p .
 - (b) (5 marks) Is (a) still valid on $C(-\infty,\infty)$? (Improper integrals involved.)

Solution. (c). No longer valid. Consider a positive, continuous function which is even and is equal to 1/x for x > 1. Because

$$\int_{-\infty}^{\infty} f \ge \int_{1}^{\infty} \equiv \lim_{r \to \infty} \int_{1}^{r} \frac{1}{x} \, dx = \lim_{r \to \infty} \log r = \infty$$

the improper integral of f does not exist, that is, $||f||_1 = \infty$. On the other hand, using

$$\int_{1}^{r} f^{p}(x) \, dx = \int_{1}^{r} x^{-p} \, dx = \frac{1}{p-1} (1-r^{1-p}) < \frac{1}{p-1} \, dx$$

we see that $||f||_p$ is finite.

(7) Let f be a 2π -periodic (real-valued) integrable function in $[-\pi, \pi]$ and denote the *n*-th partial sum of its Fourier series by $S_n f$. Set

$$\sigma_n f(x) = \frac{1}{n} \sum_{k=0}^{n-1} S_k f(x) \; .$$

(a) (10 marks) Show that

$$\sigma_n f(x) = \frac{1}{2\pi n} \int_{-\pi}^{\pi} \frac{\sin^2(nz/2)}{\sin^2(z/2)} f(x+z) \, dz \ , n \ge 1 \ .$$

(b) (5 marks) Show that

$$1 = \frac{1}{2\pi n} \int_{-\pi}^{\pi} \frac{\sin^2(nz/2)}{\sin^2(z/2)} dz \; .$$

(c) (10 marks) Prove that when f is continuous at x,

$$\lim_{n \to \infty} \sigma_n f(x) = f(x).$$

Solution. (a) It is based on the summation formula:

$$\sum_{k=0}^{n-1} \sin(k+\frac{1}{2})x = \frac{\sin^2(nx/2)}{\sin^2(x/2)} \; .$$

To prove it, we observe that

$$2\sin\frac{x}{2}\sin(k+\frac{1}{2})x = \cos kx - \cos(k+1)x$$

and, by adding up, we get the formula after using $1 - \cos nx = 2\sin^2(nx/2)$. (c) Consider

$$\begin{aligned} |\sigma_n f(x) - f(x)| &= \left| \frac{1}{2n\pi} \int_{-\pi}^{\pi} \frac{\sin^2(nz/2)}{\sin^2 z/2} (f(x+z) - f(x)) \, dz \right| \\ &\leq \left| \frac{1}{2n\pi} \int_{-\delta}^{\delta} \frac{\sin^2(nz/2)}{\sin^2 z/2} (f(x+z) - f(x)) \, dz \right| \\ &+ \left| \frac{1}{2n\pi} \left(\int_{-\pi}^{-\delta} + \int_{\delta}^{\pi} \right) \frac{\sin^2(nz/2)}{\sin^2 z/2} (f(x+z) - f(x)) \, dz \right| \\ &\equiv I + II . \end{aligned}$$

Let $\varepsilon > 0$, by the continuity of f there is some δ such that $|f(z+x) - f(x)| < \frac{\varepsilon}{2}$ for $z, |z| < \delta$. Then,

$$I \leq \frac{1}{2n\pi} \int_{-\delta}^{\delta} \frac{\sin^2(nz/2)}{\sin^2 z/2} |f(x+z) - f(x)|, dz$$

$$\leq \frac{\varepsilon}{2} \frac{1}{2n\pi} \int_{-\delta}^{\delta} \frac{\sin^2(nz/2)}{\sin^2 z/2} dz$$

$$\leq \frac{\varepsilon}{2} \frac{1}{2n\pi} \int_{-\pi}^{\pi} \frac{\sin^2(nz/2)}{\sin^2 z/2} dz$$

$$= \frac{\varepsilon}{2}.$$

Note that we have use the positivity of the kernel and (b). Now, II goes to zero as $n \to \infty$ by Riemann-Lebesgue Lemma and that is it.